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ABSTRACT. An edge labeling of a connected graph G = (V, E) is said to
be local antimagic if it is a bijection f : E — {1,...,|E|} such that for
any pair of adjacent vertices z and y, f(z) # f+(y), where the induced
vertex label f(x) = 3" f(e), with e ranging over all the edges incident
to . The local antimagic chromatic number of G, denoted by xi4(G),
is the minimum number of distinct induced vertex labels over all local
antimagic labelings of G. In this paper, the sharp lower bound of the
local antimagic chromatic number of a graph with cut-vertices given by
pendants is obtained. The exact value of the local antimagic chromatic
number of many families of graphs with cut-vertices (possibly given by
pendant edges) are also determined. Consequently, we partially answered
Problem 3.1 in [Local antimagic vertex coloring of a graph, Graphs and

Combin., 33, (2017), 275-285).
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1. INTRODUCTION

A connected graph G = (V, E) is said to be local antimagic if it admits a
local antimagic edge labeling, i.e., a bijection f : E — {1,...,|E|} such that
the induced vertex labeling f* : V. — Z given by ft(u) = 3 f(e) (with
e ranging over all the edges incident to u) has the property that any two
adjacent vertices have distinct induced vertex labels. Thus, f* is a coloring
of G. Clearly, the order of G must be at least 3. The vertex label f*(u) is
called the induced color of w under f (the color of u, for short, if no ambiguous
occurs). The number of distinct induced colors under f is denoted by ¢(f),
and is called the color number of f. The local antimagic chromatic number
of G, denoted by x14,(G), is min{c(f) : f is a local antimagic labeling of G'}.
Clearly, 2 < x14(G) < |[V(G)|. The sharp lower bound of the local antimagic
chromatic number of a graph with cut-vertices given by pendants is obtained.
In [2, Problem 3.3], the authors asked:

Does there exist a graph G of order n with x;,(G) = n — k for every
k=0,1,2,...,n—2?
In [3, Theorems 3.4 and 3.5], we proved the following that answered the
above problem affirmatively.

Theorem 1.1. [3] For each possible n,k, there exists a graph G of order n
such that x14(G) = n —k if and only if n > k + 3 > 3. Moreover, there is a
graph G of order n with x1,(G) = 2 if and only if n # 2,3,4,5,7.

We shall in Section 2 completely determine the local antimagic chromatic
number of the one-point union of cycles. Let G be a graph of order n > 3.
We also determined the exact value of the local antimagic chromatic number
of many families of graphs with pendants that has x;,(G) < n. In Section 3,
we obtained several families of graphs G with x;,(G) = n. This partially
answered [2, Problem 3.1]. For convenience, we shall use al® to denote a
sequence of length n in which all items are a, where n > 2. For integers
1 <a<b, welet [a,b] denote the set of integers from a to b.

2. x1a(G) <|V(G)]

In [2], the authors proved that for every tree T' with k pendant edges (i.e.,
with k pendants), x;,(T) > k+ 1. We generalize this result to arbitrary graphs
of order at least 3.
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Lemma 2.1. Let G be a graph of size q containing k pendants. Let f be a
local antimagic labeling of G such that f(e) = q. If e is not a pendant edge,
then c(f) > k + 2.

Proof. Let e = wv and 21, ..., x) be pendants. Thus, f(u) > g and fT(v) > ¢
and they are distinct. On the other hand, f(z;) < ¢ and are distinct for all
i. Hence ¢(f) > k + 2. O

Theorem 2.2. Let G be a graph having k pendants. If G is not Ky, then
Xia(G) > k41 and the bound is sharp.

Proof. Suppose G has size q. Let f be any local antimagic labeling of G.
Consider the edge uv with f(uv) = ¢. We may assume u is not a pendant.
Clearly, f*(u) > q > f¥(z) for every pendant z. Since all pendants have
distinct induced colors, we have x;,(G) > k + 1.

For k > 2, since x;4(Sk) = k + 1, where Sy, is a star with maximum degree
k, the lower bound is sharp. The left labeling below is another example also
showing that the lower bound is sharp. The right labeling shows that the lower
bound is sharp for k = 1.

]

The contrapositive of the following lemma [3, Lemma 1] or [4, Lemma 2.1]
gives a sufficient condition for a bipartite graph G to have x;,(G) > 3.

Lemma 2.3. [3, 4] Let G be a graph of size q. Suppose there is a local antimagic
labeling of G inducing a 2-coloring of G with colors x andy, where x < y. Let X
andY be the sets of vertices colored x and y, respectively, then G is a bipartite
graph with bipartition (X,Y) and | X| > |Y|. Moreover, z|X|=y|Y| = %.

For r > 2 and ay > ay > --- > a, > 3, denote by C(ay,as,...,a,) the
one-point union of r cycles of order aj,as,...,a, respectively. Note that
C(ay,ag,...,a;) has m = ay + -+ + a, > 6 edges and m — r + 1 vertices.

We shall denote the vertex of maximum degree by w, called the central ver-
ter, and the 2r edges incident to u are called the central edges. Denote the
consecutive edges of subgraph Cy, by €s,41,€5,42, - ., €s,44, sSuch that s; =0,
s$;i =a1 +ag+ -+ a;_; for i > 2. Moreover, for ¢ > 1, e5,4+1 and ey, 44, are
the central edges of C,.

Theorem 2.4. Suppose G = C(aq,as,...,a,), then x1o(G) = 2 if and only if
G=0C(4r—2)r=12r —2), 7 >3 or G =C((2r)I=D/2 (2p — 2)[r+1)/2]) "
is odd. Otherwise, x1o(G) = 3.
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Proof. Let G = C(ay,as,...,a,.). Define an edge labeling f : E(G) — [1,m)]
by

1. f(e;) =1i/2 for even 1,
2. f(e;) =m—(i—1)/2 for odd i.

It is easy to verify that f™(u) > m + 1, and each vertex of degree 2 has color
m + 1 and m alternately beginning from vertices adjacent to u. Therefore, f
is a local antimagic labeling that induces a 3-coloring. Thus, x;,(G) < 3. If G
contains an odd cycle, we have x;,(G) > x(G) = 3 so that x;,(G) = 3.

Suppose Xio(G) = 2. This implies that x(G) = 2 and hence a; > 4 is
even for each i. Let g be any local antimagic coloring of G that induces a
2-coloring of G with colors z and y. Without loss of generality, we may assume
that gT(u) = y. Let X and Y be the sets of vertices with colors x and y,
respectively. It is easy to get that |Y| = m/2 —r + 1 and |X| = m/2. By
Lemma 2.3, we have z|X| = y|Y| = m(m +1)/2. Hence, x =m +1>4r+1
isodd, y = m(m+1)/(m—2r+2)and y > 1+2+---+2r = 2r% + 1.
Suppose /¢ is labeled at an edge vw which is not a central edge. Without loss
of generality, we may assume that g*(v) = 2 and g7 (w) = y. Then the label
assigned to another edge incident with w must be y — . Then 1 <y — ¢ < m,
ie, £ >y—m=y—x+1. In other word, labels in [1,y — x| are labeled at
central edges. So y —x < 2r.

Solving for m, we get m = (y — 1 + \/y? + 6y — 8yr + 1)/2. Hence, 3> +
6y — 8yr +1 = t2 > 0, where t is a nonnegative integer. This gives (y + 3 —
42 +1—-B—4r)?=t2or (y+3—4r—t)(y+3—4r+t) =812r —1)(r — 1).
By lettinga=y+3—4r—tandb=y+3—4r+t we have 2y +6—8r =a+1b
with ab = 8(r — 1)(2r — 1) = 8(2r> — 3r +1). Clearly b > a > 0. Since a,b
must be of same parity, we have both a,b are even.

Recall that y — 2r2 —r > 0. Now

b
y—2r2—r=4r—3+%—2r2—r
_a+b 9 _a+b ab
_4a+4b—ab—16  (a—4)(b—4)
B 8 o 8 '

This implies that a < 4.

Before considering the cases when a < 4, we need the following claim which
is easy to obtain.
Claim: Let ¢ be a labeling of a 2s-cycle vivy - - vasv1 with G(ve;—1v2;) =
and ¢(vo;vai41) = Bi for 1 < i < s, where vasy1 = v1. Suppose ¢T (va;) = x
for 1 < j < s and ¢ (vapr1) =y for 1 <k < s—1, wherey > z. Then
a1+ 61 =, {a1,ae,...,as} is an increasing sequence with common difference
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y—x and {B1,Pa,...,Bs} is an decreasing sequence with common difference
Yy — T.

Case (1). Suppose a = 2. In this case, b = 4(r — 1)(2r — 1) and 2y + 6 —
8r = 8r? — 12r + 6. Hence, y = 4r* — 2r. This gives (i) m = 4r? — 4r and
x=4r? —4r+1or (ii) m = 2r — 1 and & = 2r < 47 + 1, a contradiction. In
(i), y —x = 2r — 1. Since [1,2r — 1] must be assigned to central edges, the
central edges must be labeled by 1 to 2r —1 and 2r% —r, respectively. There are
r —1 cycles, say Cy,,...,Cq,_,, whose central edges are labeled by numbers in
[1,2r —1].

It is easy to verify that no such graph exists for » = 2. So we assume that
r > 3.

Suppose Cy, is one of these  — 1 cycles. Note that s > 2. Keep the
notation defined in the claim. By symmetry, we may assume that oy < 5. So
a1 € [1,2r — 2]. Now we have B, = (x —a1) — (s — 1)(y — ) < 2r — 1 and
Bs—1 = (x—a1) — (s —2)(y —x) > 2r. Thus, 2r —1)?2 —a; < s(y —2) <
2r —2+4 (2r —1)?2 —ay. Hence, (2r —1)2 — (2r —2) <s(2r—1) < (2r—1)2+
(2r — 1) — 2. This implies that 2r —2 < s < 2r. Thus s = 2r — 1. Moveover,
Bs=Por—1=2r—1)—a; <2r—2. So,a;=4r—2for 1 <j<r—1.

We are now left with one unlabeled cycle, also denoted by Css, with central
edge labels must be 2r — 1 and 2r? — 7. Again, we may assume 2r — 1 =
a; < fBs = 2r% —r. By the claim, 2r? —r = (z — 1) — (s — 1)(y — x) =
(2r —1)2 = (2r — 1) — (s — 1)(2r — 1). Thus s = r — 1 and hence a, = 2r — 2.
Therefore, G = C((4r — 2)I"=1 2r — 2).

On the other hand, for i-th (4r — 2)-cycle, we choose ay =i, 1 < i <r —1;

for the (2r — 2)-cycle, we choose a; = 2r — 1. Apply the labeling as shown in
the claim. One can verify that the edge labels are all distinct in [1,47? — 47].
Consequently, C((4r — 2)["=1,2r — 2) admits a local antimagic labeling that
induces a 2-coloring. Thus, X, (C((4r — 2)I"=1 21 — 2)) = 2.
Case (2). Suppose a = 4. In this case, b =2(r —1)(2r — 1) and 2y + 6 — 8 =
472 — 61+ 6. Hence, y = 2r? +r. This gives (i) m =2r?—r—1land z = 2r® —r
with r is odd or (ii) m = 2r and z = 2r + 1 < 4r + 1, a contradiction. In (i),
y—x = 2r. Thus all the central edges must be assigned with integers in [1, 2r].
Suppose Cy; is one of the cycles whose central edges are labeled by a; and fs.
Also, by symmetry we may assume a1 < 5. So a1 € [1,2r — 1]. By a similar
computation as in Case (1), we haver—%%—% <s< r+%— % Sos=r—1
or r. Suppose there are k cycles of 2r edges in GG, then there are r — k cycles of
2r — 2 edges. Now, the size of G is m = 2rk + (2r — 2)(r — k) = 2r% — 2r + 2k.
Thus we have k = “51. Hence G = C((2r)l"=1/2) (2r — 2)[r+1)/2]),

Moreover, when s = r and since ay < 35, we have a; < /2. Since r is odd,
a; < 5L, Thus labels in [1, %52] are labeled at each of 2r-cycle, respectively.

2 2

On the other hand, for i-th 2r-cycle, we choose oy =4, 1 <@ < Tgl; for the

j-th (2r — 2)-cycle we choose a; = j + ’"517 1<5< % Apply the labeling
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as shown in the claim. One may verify that the edge labels are all distinct in
[1,2r2 — 7 — 1]. Consequently, C((2r)[("=1/2] (2 — 2)[("+1)/2]) admits a local
antimagic labeling that induces a 2-coloring. Thus,

X1a(C((2) D/, (21 = 2)[0/2)) — o,

Consequently, x14(G) = 2 if and only if G = C((4r — 2)'=U, 2r —2),r > 3
or G = C((2r)lr=0/21 (21 — 2)[("+1)/2]) '+ is 0dd. Otherwise, x;o(G) =3. O

ExaMPLE 2.5. For C(10,10,4), beginning and ending with central edges, the
two 10-cycles has consecutive labels 1, 24, 6, 19, 11, 14, 16, 9, 21, 4 and 2, 23,
7,18, 12, 13, 17, 8, 22, 3 respectively while the 4-cycle has consecutive labels
5,20, 10,15 with y = 30 and « = 25. For C(14, 14, 14,6), the three 14-cycles
has consecutive edge labels 1, 48, 8, 41, 15, 34, 22, 27, 29, 20, 36, 13, 43, 6;
2, 47,9, 40, 16, 33, 23, 26, 30, 19, 37, 12, 44, 5 and 3, 46, 10, 39, 17, 32, 24,
25, 31, 18, 38, 11, 45, 4 respectively, while the 6-cycle has consecutive edge
labels 28,21, 35,14, 42,7 with y = 56, and 2 = 49. Similarly, for C(6,4,4), the
6-cycle has consecutive edge labels 1,14,7,8,13,2 while the two 4-cycles has
consecutive edge labels 3,12,9,6 and 4,11, 10,5 respectively with y = 21 and
x = 15. For C(10,10,8,8,8), the two 10-cycles has consecutive labels 1, 44,
11, 34, 21, 24, 31, 14, 41, 4 and 2, 43, 12, 33, 22, 23, 32, 13, 42, 3 respectively,
while the three 8-cycles has consecutive labels 5, 40, 15, 30, 25, 20, 35, 10; 6, 39,
16, 29, 26, 19, 36, 9 and 7, 38, 17, 28, 27, 18, 37, 8 respectively, with y = 55
and z = 45.

For k,r > 1 and a1 > ag > -+ > a, > 3, let H(a1,as9,...,a,;k) be the
hibiscus graph obtained by identifying the central of C(ay,as,...,a,) with an
end-vertex of k copies of Pp. Clearly, H(aj,as,...,a,;k) has m + k = a1 +
-+ a, +k >4 edges and m + k — r + 1 vertices. For non-pendant vertices
and edges, we shall adopt the notation of C(as,as,...,a,) accordingly.

Theorem 2.6. For k > 1,

3 if k=1,
Xia(H(a1, a2, ..., ar;k)) = f
E+1 ifk>2.
Proof. Let vj (1 < j < k) be the pendant vertices of G = H (a1, as,...,ar; k).
Define an edge labeling f : E(G) — [1,m + k] by
1. f(e;)) = (i+1)/2 for odd i,
2. f(e;) =m—1i/2+1 for even ¢,
3. flwj)=m+jforl<j<k.
It is easy to verify that f*(u) >m+k+3, f*(v;) =m+jfor 1 <j <k,
and each degree 2 vertex has color m+ 1 and m + 2 alternately beginning from
vertices adjacent to u.
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When k£ > 2, we have that f is a local antimagic labeling that induces a
(k 4+ 1)-coloring so that x;,(G) < k 4+ 1. By Theorem 2.2, we know x;,(G) >
k+ 1. Therefore, x14(G) =k + 1.

Suppose k = 1. Clearly, f is a local antimagic labeling that induces a 3-
coloring. So x1q(G) < 3. If G contains an odd cycle, then x;,(G) > x(G) = 3.
Hence, x14(G) = 3. Suppose xi;o(G) = 2. Then G is bipartite and hence a;
is even for each 1 < ¢ < r. Let g be a local antimagic coloring of G that
induces a 2-coloring with colors x and y such that g*(u) = y. By Lemma 2.1
g(uvy) =m+ 1. Since gt (u) =y, g+ (v1) = . Hence z = m + 1.

Let X and Y be the sets of vertices with colors x and y, respectively. It is
easy to get that |Y]| = (m —2r+2)/2 and | X| = (m+2)/2. By Lemma 2.3, we
have y(m—2r+2)/2 = (m+1)(m+2)/2. Hence, y = (m+1)(m+2)/(m—2r+2).

Solving for m, we get m = (y — 3 + \/y> + 2y — 8yr + 1)/2. Hence, y* +
2y — 8yr +1 = t2 > 0. This gives (y +1 —4r)2 — (1 —4r)2 +1 = % or
(y+1—4r—t)(y+1—4r+t) = 8r(2r—1), where t > 0. By letting a = y+1—4r—t
and b =y+1—4r +t, we have 2y +2 — 8 = a+ b with ab = 8r(2r — 1). Since
a,b must be of same parity, we have both a, b are even.

2r

Now,y >m+1+ > i>4r+1+7r(2r+1)=2r%+5r + 1. By a similar
i=1

computation in the proof of Theorem 2.4, 0 < 2r < y —2r2 —3r — 1 =

—%. This implies that a = 2 and b > 6. In this case, b = 4r(2r — 1)
and hence y = 4r2 +2r. Thus ¢t = 4r2 — 2r — 1 and hence m 4r? — 2

orm = 2r — 1. Since m > 4r, m = 4r2 — 2. Since b > 6, r > 2. Now
27

y=4r2+2r > (472 — 1) + Y. i = 672 + r — 1 yields a contradiction. Thus
i=1

Xla(H(al,ag,...,ar;l)):3. -

Let T'(m, n) be the vertex-gluing of the end vertex of a path P, and a vertex
of a cycle C,,. In some article, T'(m,n) is called a tadpole graph.

Theorem 2.7. Forn >3, m > 2, x;o(T(m,n)) = 3.

Proof. Note that T(m,n) has order and size m + n — 1. Let the edge set be
{ei=vwip1 |i€[l,m+n—2]} U{emin-1 = Umin—1Vm} so that v; € V(Pp,)
for i € [1,m] and v; € V(C,,) for j € [m,m+n —1]. Note that v,, is the vertex
of degree 3. For 1 <i < m+n — 1, define an edge labeling f : E(T'(m,n)) —
[1,m+n—1] by

Fle) = {m+n —(i+1)/2 for odd 1,

i/2 for even i.
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‘We now have

w for even m,n,

o) — W for odd m, n,
W for odd m and even n,
3(7n—‘;¢ for even m and odd n.

Moreover, for i # m, fT(v;) = m+n —1 for odd i, f*(v;) = m +n for even i.
Thus, Xi(T(m,n) < 3.

Suppose there exists a local antimagic labeling f that induces a 2-coloring
of T(m,n) with colors z and y such that x < y. Then T'(m,n) is bipartite
so that n is even. Let X and Y be the sets of vertices with colors x and y,
respectively. Clearly || X| — |Y|| < 1. Combining with Lemma 2.3, we have
z|X| = (m+n)(m+n—-1)/2 = y|Y| and |X| = |Y| + 1. By Lemma 2.1,
ff(vi)=x=m+n—1. So|X|=(m+n)/2and |Y| = (m+n)/2—1. Thus
y=(m+n)(m+n—1)/(m+n—2) which is not an integer, a contradiction.
Thus, xio(T(m,n)) = 3. O

For ay > as > -+ > a, > 3, let GB(ay,as,...,a,) denote the generalized
book graph which is the edge-gluing of cycles of order a;,1 < ¢ < r, at a
common edge. We shall denote this common edge by uv in the following three
results.

Lemma 2.8. Forr > 2, x1o(GB(a1,as,...,a,)) > 3.

Proof. Let G = GB(ay,as,...,a,). Suppose G contains an odd cycle, then
Xia(G) > x(G) = 3. Suppose G is bipartite, then G has the same size of
parts. By the contrapositive of Lemma 2.3, we know x;,(G) # 2. Therefore,
Xla(G) 2 3. O

Theorem 2.9. Suppose r > 2, we have X1,(GB(3[")) = 3.

Proof. Let G = GB(3I") such that V(G) = {u,v} U{z; : 1 < i < r} and
EG) = {ww} U{uz;1 < i < rpU{vx; : 1 < i < r}. Define a bijection
f:E(G)—[1,2r +1] by

(1) flux;)=idifor 1 <i<r,

(ii) flvz;)=2r+1—ifor 1 <i<r,

(iii) f(uv) =2r 4+ 1.
It is easy to verify that f*(z;) = 2r+1for 1 <i <r, fT(u) =r(r+1)/242r+1
and fT(v) = (r +1)(3r + 2)/2. Hence, f is a local antimagic labeling that
induces a 3-coloring so that x;,(G) < 3. Since x1.(G) > x(G) = 3, we have
X1a(G) = 3. 0

If GB(ay,as,...,a,) # GB(3I'), it is easy to get a local antimagic labeling
that induces a 4-coloring.
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Conjecture 2.1. If ay > 4, then x1.(GB(a1,as9,...,a,)) =4.

Let G(ay,as,...,ar;m) be obtained by identifying the vertex w of
GB(ay,as,...,a,) with a vertex of m > 1 copies of Ps.

Theorem 2.10. Let G = G(3I";m), then

3 if G =G(3I;1) or G(31;2),
4 if G =G(3I;2),r >3,
Xia(G) = . r
m+1 ifm> ( ) >3
m+2 if3<m<(}).
Proof. For non-pendant vertices, we adopt the notations of GB(3[")). The
pendant vertices are denoted by y;,1 < j < m. By Theorem 2.2, we know
Xia(G) > m + 1. Since G contains an odd cycle, we also have x;,(G) > 3.
Suppose m = 1. Define a bijection f : E(G) — [1,2r + 2] by

(1) flux;) =ifor 1 <i<r,

(ii) flvz;)=2r+1—ifor 1 <i<r,
(i) flugn) =2 +1,
(iv) f(uv) =2r+2.

Clearly, f*(u) = (r2+9r +6)/2 # fH(v) = (3r2 +5r +4)/2 # fH(x;) =
2r+1 = f*(y1). Thus, f is a local antimagic labeling that induces a 3-coloring.
Thus, x1,(G(3: 1)) = 3.

Consider m = 2. Suppose f is a local antimagic labeling that induces a 3-
coloring. Without loss of generality, we must have (r + 1)(r +2)/2 < fT(v) =
fT(y1) < 2r+ 3. Hence, r = 2. The labeling f(uv) = 1, f(vzy) = 2, f(vas) =
3, f(uzy) =5, f(uze) = 4, f(uy1) = 6, f(uy2) =7 gives Xla(G(S[Q]; 2)) = 3. For
r > 3, we then have x;,(G) > 4. Define a bijection f : E(G) — [1,2r + 3] by
(1) fluzy))=2r+2—idifor1 <i<r,

(ii) f(vz;)=ifor 1 <i<r,
(iil) fluy;)=2r+14+jfor1<j<2,
(iv) f(uv) =r+1.

Clearly, f is a local antimagic labeling that induces a 4-coloring with f¥(u) =
(r+2)(3r+5)/2, fF(v) = ("T?), fH(y)) =2r+1+4,j =1,2 and f+(z;) =
2r +2,1 < i <. Thus, x1,(G(3';2)) = 4 for r > 3.

Consider m > 3. We have x;,(G) > m + 1 > 4. Suppose m > (;) Define a
bijection f : E(G) — [1,2r +m + 1] by

(i) flum;))=2r+2—iforl<i<r,
(i) f(vz;)=idifor1<i<r,
(iil) f(uy;) =2r+1+jforl <j<m,
(iv) fuww)=r+1.
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Clearly, f is a local antimagic labeling that induces an (m+ 1)-coloring with
Fru) = (m+ v+ D@ +m o+ 22 F10) = (5) = Flp). ) =
2r+1+4j,5 € 2,m\{(5)} and fF(z;) =2r+2 = f*(y1),1 < i < r. Thus,
Xia(GBMim)) =m+1ifm > () > 3.

Suppose m < (;), then r > 4. If x;,(G) = m+1, we may assume that G ad-
mits a local antimagic labeling f with f*(y1) = f*(z;) > r(2r+1)/2, fT(y2) =
fH(v) > ("1?). Observe that f+(y;) < 2r+1+m < 2r+1+(}) = ("$?) < f+(v)
for 1 < j < m, a contradiction. Thus, x;,(G) > m + 2. Define a bijection
f:EG) =1, 2T+m—|—1}by

i) f(
(11) f(vxl) 2r +2 —1 for 1 <z <r,

ii) f(uyj)—2r+l+j for 1 <j<m,
(iv) f(uv) =

It is easy to show that f is a local antimagic labeling that induces a 4-coloring
with fT(u) = (r+1)(r+2)/2+m(dr + m+3)/2, fT(v) =3r(r +1)/2 + 1,
(@) = fH(y2) =2r +3,fT(y;) =2r+ 1+ for j = 1,3,4,...,m. Thus,
Xia(GBim)) =m+2if 3 <m < (}). O

Problem 2.1. Study x;.(G(a1,az,...,ar;m)) for a; > 4.

Suppose G is of order m. Let G ® H be the graph obtained from G and m
copies of H by joining the i-th vertex of G to each vertex of the i-th copy of
H.

Let G = C,,, © O, with V(G) = J ({vi; : 1 < j <n}U{w}) and E(G) =

s

7

m

U {wvsj: 1 <j <n}U{e;}), where e; = uyu;qq for 1 <i <m, and upmq1 =
i=1

uy by convention. We shall keep these notation in the following discussion.

Lemma 2.11. Form >3 andn > 1, x14(Cp, © Op,) > mn + 2.

Proof. Let f be a local antimagic labeling of G = C,,, ®0,,. Let e be an edge of
G such that f(e) = m(n+ 1) which is the size of G. If e is not a pendant edge,
then by Lemma 2.1, ¢(f) > mn+2. So we only need to deal with e = u;v; ; for
some i € [1,m] and j € [1,n]. By renumbering we may assume that e = uqvy ;.
Note that f*(v; ;) < m(n+1).

Suppose fT(u;) and f*(u;+1) are greater than m(n + 1) for some 4, 1 <
i < m. Since they are distinct, ¢(f) > mn + 2. So we may assume that the
induced colors of any two consecutive vertices of C,,, do not both greater than
m(n + 1). Let k be the number of vertices in C,, whose induced color is less
than or equal to m(n + 1). Thus, m — 1 > k > [m/2]. All edges in the cycle
C,, are incident to at least one of these k vertices. So there are exactly m + kn
distinct edges incident to these k vertices.

Now (m 4+ kn)(m+kn+1)/2 < m(n+1)k. Since m > k+1, k(n+1)(m +
kn+1) <[k(n+1)+1)(m+kn+1)=(k+1+kn)(im+kn+1) <2m(n+1)k.
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Hence m+kn+1 < 2m or kn+1 < m. Since k > [m/2], n = 1. For this case,
we have (m + k)(m + k + 1) < 4mk. This implies that (m — k)2 +m +k <0
which is impossible. (I

Theorem 2.12. Form >3 and n > 1, x;4(Cr © Op,) = mn+2 if both m and
n are even; otherwise mn + 2 < x1a(Cr, © O,) < mn + 3.

Proof. Suppose G = C,,, ® O,,. By Lemma 2.11, we know x;,(G) > mn + 2.
Consider m = 2h > 4 and n = 2k > 2. Define f : E(G) — [1,2h(2k + 1)] by
fle;) =i for 1 <i<2h and

flurvi1) = 4h + 1, f(ugv1 2) = 6h,
f(uzi—1v2i—1,1) = 6h + 3 — 21, flugi1v9;_12) =6h+2—2i, 2<i<h;
fugivei 1) = 4h + 1 — 24, flugiveiz) =4h+2—2i, 1<i<Hh;
fupvp2j—1) =2h(25 — 1) +, 1<r<2h,2<j<k;
flupvro;) =20(25+1)+1—r, 1<r<2h,2<j<k.

It is easy to check that f is a bijection. It is also easy to verify that all
pendants have different colors from 2h + 1 to 2h(2k + 1).
Now, for 2 < i < h, we have

T (ugiz1) = f(e2iz1) + fe2im2) + flugi—1v2i—1,1) + fu2i—1v2i-1,2)

k k
+ Z fluzi—1vai—1,25-1) + Z fluzi-1v2i-1,25)

j=2 j=2
= (20 — 1) + (20 — 2) + (6h + 3 — 2i) + (6h + 2 — 2i)

k k
+Z2h 2j — 1)+ (20 — )]+ > _[2h(2j + 1) + 1 — (2i — 1)]

= 12h+2+Z[8hj+1} = 12h + 2+ (k — 1)(4hk + 8h + 1).
=2
We can also get that f*(ui) = 12h + 2+ (k — 1)(4hk +8h + 1) and f (ug;) =
8h + 2+ (k—1)(4hk +8h + 1) for 1 < i < h. So we have x;,(G) < mn + 2.
Hence, x14(G) = mn + 2.
Consider odd m,n. Let A = (a; ;) be a magic (m, n) rectangle involving the
integers [1, mn] (for the existence of magic rectangle, please see [5]). Let g be

a local antimagic labeling of C,,, with ¢(g) = 3. Now we define a labeling f for
G by

f(e) = g(e) +mn for e is an edge of Cy,;
fluv ) =a; 5, forl<i<mand 1<j<n.
\J J
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Clearly ¢(f) = mn + 3. So x1.(G) < mn + 3.

Consider m = 2h+1 > 3 and n = 2k > 2. Let « be the k-vector whose i-th
coordinate is i, i.e., « = (1,2,...,k). Let J be the k-vector whose coordinates
are 1. Let B be a (2h+1) x 2k matrix whose i-th row is ((i —1)kJ 4+« (4h+2—
i)kJ + ). Hence each row sum of B is (4h + 1)k% + k(k + 1) = 4hk? + 2k? + k.
Note that B contains all integers in [1,4hk + 2k]. Similar to the case of odd
m,n, we will obtain a local antimagic labeling f of G with ¢(f) = mn + 3. So
Xia(G) < mn+ 3.

Consider even m = 2h > 4 and odd n = 2k — 1 > 1. Let X = {jk :
1 < j < 2h}. We define a labeling ¢ : E(Cap) — X by ¢(ez;—1) = ik and
dlez;) = (h+ i)k, 1 < i < h. Then ¢+ (u;) = (h+ j)k for 2 < j < 2h and
¢t (u1) = (2h + 1)k.

Let C be a (2h) x (2k) matrix whose i-th row is ((4h—i)kJ+a (i—1)kJ+a).
Hence each row sum of C'is N = (4h—1)k*+k(k+1) = 4hk?+k. Let C' = (c; ;)
be a (2h) x (2k — 1) matrix obtained from C by deleting the last column of C.
So the i-th row sum of C” is N —ik, 1 < i < 2h. Now we shall label the pendant
edges u;v; ; by entries of a suitable row of C’, 1 <i <2h and 1 < j <2k —1.

Let ¢ : E(G) \ E(Ca,) — [1,4hk] \ X defined by v(ug;ve; ;) = coi; for
1 < < h; P(ugit1v2i41,5) = C2i—1,5, for 1 <@ < h—1; and ¥(uivy ;) = can—1,5,
where 1 < j < 2k — 1. Now ¢t (uy) = N — (2h — 1)k; o+ (ug;) = N — 2ik
for 1 <i < h and ¢¥*(ugii1) = N — (26 — 1)k for 1 < i < h — 1. Note that
P (ugvs ) = 4hk which is the largest label.

Let f be the labeling of G obtained by combining ¢ and . Hence
[T(ur) = ¢F(w1) + ¢t (ug) = 2h + 1)k + [N — (2h — 1)k] = N + 2k.
f+(u2i) = ¢+(U2i) + ¢+(U2i) = (h + 22)/45 + [N — 2’Lk‘] =N+ hk for 1 <i<h.
I (u2it1) = T (ugip1)+¥ T (ugip1) = (h+2i+1)k+[N—(2i—1)k] = N+(h+2)k
for1<i<h-—1.

Here ¢(f) =2h(2k — 1) + 3 if h # 2.

For h = 2, we redefine the labeling ¢ by ¢(e1) = k, d(ea) = 3k, d(e3) =
4k and ¢(eq) = 2k. Then ¢ (uy) = 3k, ¢t (u2) = 4k, ¢ (uz) = Tk and
¢t (ug) = 6k. Hence fT(uy) = N, fT(uz) = N + 2k, fT(uz) = N + 6k and
ft(us) = N + 2k. Here ¢(f) =2h(2k — 1)+ 3 if h = 2.

This completes the proof. (Il

ExAMPLE 2.13. Consider G = C3 ® O;. Denote v; = v; 1. Define f(ujug) = 2,
fluguz) =3, f(ugur) =4, f(urv1) =5, f(ugvz) =1 and f(uzvs) = 6. Then
the colors of vertices are 1,5,6,11,13. So x;4(G) < 5. By Theorem 2.12 we have
Xia(C3 ® O1) = 5.
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EXAMPLE 2.14. According to the proof of Theorem 2.12 we have the labelings
for C4y ® O; and C4 © Os, respectively.

S0 X1a(Cs ® O1) < 6 and y;,(Cy ® O3) < 14. By Theorem 2.12 we have
X1a(Cs ® O1) = 6 and x;4(Cy © O3) = 14.

We are only aware, after obtaining the above theorem, that Arumugam
et al. [1, Section 3] have also obtained partial solutions on X (Cr © Op).
Particularly, their Lemmas 3.6, 3.12 and 3.13 imply that x4 (Cy, ©O0,) = mn+2
for even m > 4 and n > 3. Moreover, Lemmas 3.14, 3.15 and 3.16 partially
solved the case when m is odd. This left x;,(C,, ® Oy,) still unsolved for odd
m and finitely many n.

3. x1a(G) = [V(G)]

Form>1,n; >n41 (1 <i<m-—1),and ng +na+ -+ nm,m > 1, let
K(m;ni,ng,...,ny,) be obtained from K, by joining n; pendant vertices to the
i-th vertex of K,,. Note that K(2;1,0) = P; with x;,(P3) = 3 and K(2;1,1) =
Py with xi0(P1) = 3 (see [2, Theorem 2.7]). Moreover, x;,(K(2;2,1)) = 4
(see [3, Theorem 8]). Observe that K(1;n — 1) = K(2;n — 2,0) is the star
graph Ky ,—1 of order n with x4 (K1 n—1) = n.

Theorem 3.1. Form > 2, x;o(K(2;n1,0)) =ny + 2.
Otherwise, Xio(K(m;ni,na, ..., ny)) < ni+ng—+---+n,+m and the equality
holds if and only if (N, +m — 1)(nym +m)/2 > ny +ng+ -+ 1 + ().

Proof. Note that G = K(m;ni,na,...,ny) has order n = ny +ng+- -+, +
m and size ¢ = ny +ng + -+ + ny, + (). By definition, it is easy to get
Xia (K (2;11,0)) = ny + 2. We now assume G % K(2;n1,0). Let V(G) = {u; :
1<i<m}pU{u;p:1<i<m,1<k<n}and BE(G) ={uu; : 1 <i<j<
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myU{eir =uiuir: 1 <i<m,1<k<mn;}. Suppose fis any local antimagic
labeling of G. By definition, we must have all pendant vertex labels and all non-
pendant vertex labels are mutually distinct respectively. Moreover, f¥(u;) #
FT(uig) and fT(u; k) < gforalli, k. Since for 1 <i < m, deg(u;) > ny,+m—1,
we also have f*(u;) > 1424+ (nym+m—1) = (N +m—1)(n, +m)/2.
Thus, if (n, + m — 1)(n, +m)/2 > ¢, we have f*(u;) > f*(ujx) for all
1<4,5 <m,1 <k <n;. Therefore, x;, = n. This prove the sufficiency.

To prove the necessity, suffice to show that if (n,, +m —1)(n, +m)/2 < g,
then ¢(f) < n for some local antimagic labeling f. Consider the sequence of

edges S = UmUm—1, UmUm—2, UmUm—3, .- UmUL, Em 1, Em,2, Em. 35 -y Cmon,,
Um—1Um—2, Um—1Um—3, s Um—1U1, Em—1,1, Em—1,2, Em—1,3y - s Em—T,npm_y15+ - >
UUi, €21, €2,2, €23, -+, €2.ns, €1,1, €12, - -, €1 ,n,- Define f : .S — [1, q] accord-

ing to the order in S. Observe that
(i) f is bijective,
(ii) all the pendant vertex induced labels are distinct,
(iii) for 1 <i<m,1 <k <mny, fT(u;) > fT(uix)if n; >0,
(iv) for 1 <i<m—1, fuju;) > f(uipru;) (j #4,i+1) and Y ;0 flein) >
pot fleirir) so that fF(u;) > fF(uit).

Thus, f is a local antimagic labeling. We now have f*(u,,) =142+ ---+
(M +m—1) = (nm +m—1)(nm +m)/2 and fF(u; ) <gfor1 <i<m,1<
k < mny;. Since (N, +m — 1)(n, +m)/2 < g, then there exists an edge e with
fle) = (nm +m—1)(nm +m)/2, where f is defined above. If e = e; 1, then we
have f*(u;x) = f(un) so that ¢(f) < n. Otherwise, since for 1 <t <m —1,
flugum) =m—t <m(m—1)/2 < (ny +m — 1)(ny, + m)/2 = f(e), we must
have e = w;u; for 1 <i < j <m — 1. We have the following two cases.

Case (a). ny = 0. In this case, m > 3. Note that K,, has size (7;) =
1424+ (m—1) = fT(up). Thus, e = usu; and e;; must be the next
unlabeled pendant edge. We now swap the labels of upu; and ey ;. It is easy
to verify that a new local antimagic labeling g with g™ (u,) = g¥(u1,1) = ()
is obtained. Therefore, ¢(g) < ny +m =n.

Case (b). ng # 0. In this case, according to our labeling sequence, e; 1 must
be the next unlabeled pendant edge. Let S’ be obtained from S by putting
e;1 right before e. Now, define g : S” — [1,¢| according to the order in S’
One can verify that all the observations under f still hold under g. Moreover,
g (uj1) = g7 (uy,). Thus, g is a local antimagic labeling with ¢(g) < n. O

By Theorem 2.2, we know (K (2;a,0)) > a+b+ 1.
Corollary 3.2. Fora >b> 2,

a+b+2 ifa<bb+1)/2
a+b+1 otherwise.

Xia(K(2;a,b)) = {
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Suppose k > 2, ny,...,ng > 0 and ny + - -+ +ng > 2. Let Ct(k;ng, ... ,ng)
be the caterpillar graph obtained from the path P, = vyvs - - - v by joining n;
pendants to v;. Consider the following two conditions:

Cy : min{(ny + 1)(n1 + 2)/2, (n2 + 2)(n2 + 3)/2, (n3 + 1)(n3 + 2)/2} > ng +
no + ns + 2

Cy: No ny + ns + 2 of distinct integers in [1,71 4+ no + n3 + 2] can have sum
of the ni 4+ 1 integers equal sum of the remaining ng + 1 integers.

Theorem 3.3. Suppose ni,na,n3 > 1. If Ct(3;n1,n2,n3) satisfies conditions
Cy and Cs, then xi1,(Ct(3;n1,n2,n3)) = N1 + ng +ng + 3.

Proof. Let G = Ct(3;n1,n2,n3) be the caterpillar graph obtained from the
path P3 = zyz by joining pendants x1,...,z,, to z, pendants y1,...,Yn, to y
and pendants zj,..., 2y, to z. Let f be a local antimagic labeling of G. Note
that f*(z) > (ny + 1)(n1 +2), fH(y) > 1(na +2)(n2 + 3) and fH(z) >
L(ng + 1)(ns + 2). Moreover, f*(y) # f* () and f*(y) # f+(2). By s,
we obtain that f*(z) # f*(z). Combining the results above, by C; we have
Xia(G) > n1 +ns +n3 + 3.

We now give a labeling f : E(G) — [1,n1 + n2 + n3 + 2]. By symmetry,
we only need to consider three possibilities. Suppose n1 < ns < ng, we label
in the sequence 1, TTa, ..., Ty, s TY, YY1, YY2, - « s YYnygs Y25 2215 2225 « - + s Z2ng-
Clearly, fT(2) = (n3+1)(2n1+2n2+4)/2 > fT(y) = (n2+2)(2n1 +n2+3)/2 >
fr(x) = (n1 + 1)(n1 + 2)/2 which in turn greater than all the pendant vertex
labels. Thus, ¢(f) = n1 + na + ng + 3. Suppose n; < n3z < ng, we label
in the sequence xx1, LT, ..., TLp,, TY, 221,222, - - -y Z2ng, YZ, YY1, YY2, - - - s YYns-
Similarly, we have f*(y) > f™(2) > f*(z) which in turn greater than all
the pendant vertex labels. Thus, ¢(f) = ny + na + n3 + 3. Finally, suppose
ngy < n1 < ng, we label in the sequence

YY1,9Y2, - - s YYno s LY, TX1, TL2y « « « y XXy y RRZ1, RR2, - -+, RRngy YR
Similarly, we have we have fT(z) > f*(x) > fT(y) which in turn greater
than all the pendant vertex labels. Thus, ¢(f) = ny + na + n3 + 3. O

We are not able to find a Ct(3;n1,n2,n3) that satisfies Conditions C; and
C5. Thus, we have the following problem.

Problem 3.1. Prove the existence of Ct(3;n1,n2,n3) in Theorem 3.3.

Let us consider a special case Ct(3;n1,0,n3) with ng > n;. In this case, C;
does not hold. When n; = 1, C#(3;1,0,n3) is a coconut graph. It is known
that x;,(Ct(3;1,0,n3)) = n3 + 2. But we shall also include this result in the
following corollary.

Corollary 3.4. Suppose condition Cs does not hold and 1 < ny < ng, then
X1a(Ct(3;n1,0,n3)) = ny +n3 + 1.
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Proof. Let Ct(3;n1,0,n3) be as defined in Theorem 3.3. Since Cy does not hold,
[1,n1 +n3 + 2] has a bipartition (S, S3) such that |S1| =ny +1, |S3] =ng+1
and the sum of numbers in S) equals +(n1 + ng + 2)(n1 + n3 + 3) (of course,
n1 +n3 =1,2 (mod 4)).

Suppose 1 € S;. Choose a € S5 arbitrarily. Define f : E(Ct(3;n1,0,n3)) —
[1,n1+n3+2] such that f(zy) =1, f(yz) = a, {f(zx;) |1 <i<ni} =5 \{1}
and {f(22) | 1 < j < ng} = S5\ {a}. Now f+(z) = f7(2) = L(m +ng +
2)(n1 +n3 + 3), fT(y) = 1+ a which is equal to a label of a pendant vertex.
So we obtain that x;,(Ct(3;n1,0,n3)) < ny + ng + 1. Similarly for 1 € Ss.

By Theorem 2.2 we have x;,(Ct(3;n1,0,n3)) = ny +n3 + 1. O

Corollary 3.5. Suppose condition Co holds and n1 < ns < (n1+2)(n1 —1)/2,
then x14(Ct(3;m1,0,n3)) = ng +ng + 2.

Proof. Under the assumption, ny > 2. Let Ct(3;n1,0,n3) be as defined in
Theorem 3.3. Condition Cy holds implies that fT(x) # f*(z) for all possible
local antimagic labeling f of Ct(3;n4,0,n3). Moreover, ng < (n1+2)(n1—1)/2
implies that (ng + 1)(n3 +2)/2 > (n1 + 1)(n1 +2)/2 > ny + ng + 2 so that
fT(x) and f*(2) are larger than all other pendant vertex colors for all possible
local antimagic labeling of Ct(3;n1,0,n3). Thus, ¢(f) > n1 + ng + 2.

Define f : E(Ct(3;n1,0,n3)) — [1,n1 +n3+2] such that f(zxy) =1, f(yz) =
2, flox;) =i+ 2for 1 <i<mnyq, f(zz;) =n1+2+j for 1 <j <ng. Clearly,
f is a local antimagic labeling with n; + ng + 2 distinct vertex colors. Thus,
X1a(Ct(3;m1,0,n3)) = ny +n3 + 2. O

Corollary 3.6. Suppose condition Cy holds and ny < (n1+2)(n1 —1)/2 < ngs,
then x1a(Ct(3;n1,0,n3)) =ny +ng + 1.

Proof. Under the assumption, n; > 2. Define f : E(Ct(3;n1,0,n3)) — [1,n1 +
n3 + 2] such that f(axy) =1, f(zz;)) =i+ 1for 1 <i < nq, f(yz) =n1 +2
and f(zz;) =n1+2+j for 1 < j <mns. Now, fT(y) =n1 +3 < fH(z) =
(1 + 1)(n1 +2). Also fT(2) > fT(y). Since (n1 +2)(ny —1)/2 < ng is
equivalent to 2(ny + 1)(ny 4+ 2) < n1 + ng + 2, we have f(z) = fF(z;) for
some j > 2. Clearly, f is a local antimagic labeling with n; + ny + 1 distinct
vertex colors. By Theorem 2.2 we have x;,(Ct(3;n1,0,n3)) =n1+n3+1. O

Problem 3.2. Study xio(Ct(k;nq,...,nk)).

Note that the authors in [1] have also obtained results on x;.(G @ O,)
where G is a path P,, (m > 2) or a complete graph K,,, (m > 4). Note that
P, © O, = Ct(m;nl™). In particular, they showed that x;,(Ct(m;nl™)) =
[V(Ct(m;nl™))| = mn 4+ m for m > 3,n > 2, and that x;,(Cs ® O,) =
[V(C300,) =3n+3forn>2.

Up to now, it is known that for a graph G of order n, x;.(G) =n if G = K,
(n>2), K11 (n>3),or K(m;ni,ne,...,ny) for (n,+m—1)(n,+m)/2 >
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ny+mng+ -+ Ny + (T;), or Ct(3;n1,n2,n3) of Theorem 3.3, or Ct(m;n[™)
(m>3n2>2) orCs300, (n>2). It is also easy to verify that if G is a
graph of order 3 < n < 6, then x;,(G) = n if and only if G = K, K; ,—1 or
K(2;2,2). In [2, Problem 3.1], the authors posed the problem: Characterize
the class of graph G of order n for which x;,(G) = n. We end this paper with
the following conjecture.

Conjecture 3.1. A graph G of order n has x1o(G) = n if and only if G = K,
(n>3); or Ky no1 (n > 3); or K(m;nq,ne,...,Ny) for (nm +m —1)(n, +
m)/2 > ny +ng+ -+ Ny + (7;); or Ct(3;n1,n9,n3) of Theorem 3.3; or
Ct(m;nl™) (m >3,n>2); or C30 0, (n>2).
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